When the Fermi surface is distorted by warping, the enclosed volume must remain unchanged from the spherical case. For warping of the form (IV-1) Cooper and Raimes [6] give the enclosed volume as

$$
\begin{equation*}
V=4 \pi / 3 k_{0}^{3}\left[1+.57 A^{2}+1.85 A_{1}^{2}\right] \tag{IV-9}
\end{equation*}
$$

We shall see later that $|\mathrm{A}|<.04$ and $\left|\mathrm{A}_{1}\right|<.09$ for all the alkali metals; in addition A and A_{1} are always negative. Under these conditions the contribution of the terms in A^{2} and $A_{1}{ }^{2}$ to the expression in the bracket is less than 2 percent. To a good approximation the volume enclosed by the warped Fermi surface is just that of a sphere with radius k_{o}, and since the enclosed volume must equal that of the Fermi sphere, k_{o} equals k_{s} and

$$
\begin{equation*}
k_{o} a / 2 \pi=.62 \tag{IV-9a}
\end{equation*}
$$

The data of Ham were fitted by choosing a level of energy such that the maximum and minimum values of $k a / 2 \pi$ for this energy averaged to .62 . The values of A, A_{1}, and k_{o} for this energy were computed using Eq. (IV-1) and values $k a / 2 \pi$ given by Ham's E vs. k curves. If the value of $k_{o} a / 2 \pi$ obtained differed by more than 1 percent from .62 we repeated the procedure for a different value of energy.

In Table 4-1 we tabulate the results of this procedure. Since the actual curves of E vs. k are not shown we give the value of $a k / 2 \pi$ at the Fermi energy for the principal directions. The last figure on the values for A and A_{1} is given even though the precision of the fit and of the E vs. k curves used does not justify it; rounding off would obscure some of the changes of warping parameter with lattice constant. In addition, the values of A and A_{1} for cesium are sensitive to the choice of Fermi energy since k changes very rapidly with energy in this particular case. In Table 4-2 we give values of the warping parameters for lattice constants corresponding to atmospheric pressure and to $15,000 \mathrm{~kg} / \mathrm{cm}^{2}$; these values are obtained from a linear interpolation between the values of lattice constant shown in Table IV-1.

Examination of Table 4-1 shows that the k vectors in the 100 and 111 directions are usually equal; for this case (IV-1) leads to the condition $\mathrm{A}=.47 \mathrm{~A}_{1}$. We have used this relation in computing B and B_{1} for values of
A_{1} between. 00 and -.08 , using the expressions given in Appendix 1. The result can be expressed as

$$
\begin{gather*}
\mathrm{B} / \mathrm{A}=\mathrm{B}_{1} / \mathrm{A}_{1}=3.3-60 \mathrm{~A}_{1} \text {, for } \mathrm{A}_{1}<0 . \tag{IV-10}\\
\mathrm{C} . \text { Dependence of } \mathrm{n}^{*} \text { on Pressure }
\end{gather*}
$$

We have obtained a range of values for A and A_{1} from Ham's work and we can express B and $B_{ \pm}$in terms of A and A_{1}. We now notice that the terms arising from the sixth-order Kubic harmonics dominate the expression for n^{*} Eq. (IV-6). Using the relation (IV-10) for B and setting $C=0$ we find that the terms in A and B contribute only about 1 percent to n^{*} for $|A| \leq .03$. We can simplify the fitting of the data with no significant error by considering $\underset{*}{\text { only }}$ the contribution of terms in A_{1}, B_{1}, and C_{1} to n^{*}. The expression for $n{ }^{*}$ then becomes:

$$
\begin{equation*}
\mathrm{n}^{*}=1+12.3 \mathrm{~A}_{1}^{2}-24.6 \mathrm{~A}_{1}\left(\mathrm{C}_{1}-\mathrm{B}_{1}\right)-.615\left(\mathrm{C}_{1}-\mathrm{B}_{1}\right)^{2} \tag{IV-11}
\end{equation*}
$$

A non-zero value of C_{1} can cause n^{*} to decrease as $\left|A_{1}\right|$ increases. Investigation of the behavior of n^{*} vs. A_{1} for different forms of C_{1} is straightforward but tedious. In. Fig. 4-1 we give some curves of n^{*} vs. A_{1} obtained using Eq. (IV-11) with the supplementary condition (IV-10) and various forms of C_{1}. The values $C_{1}=-.3$ and $C_{1}=-.4$ were chosen because they represent the simplest non-zero $C_{1}^{\prime} s$ and because their magnitude gives values of n^{*} for $A_{1}=0$ that are in the same range as the observed values in the alkalis. The values $C_{1}=-.3+4.5 \mathrm{~A}_{1}$ and $C_{1}=-.4+5 \mathrm{~A}_{1}$ are chosen because the terms in A_{1} approximately cancel the terms in $A_{1_{*}}{ }^{2}$ occurring in the expression for n^{*} and give a steeper initial slope of the n^{*} vs. A_{1} curve. Certain features of these curves should be noted.

They show that n^{*} can decrease as the warping, $\left|A_{1}\right|$, increases; the experimental data and Ham's calculations do not conflict.

The size of the changes in n^{*} produced by changes in A_{1} of the magnitude indicated by Table $4-2$ is consistent with the size of the observed changes. Looking at the part of the curve before the minimum we see that changes in A_{1} of .02 produce changes of the order of 10 percent in n^{*}.

